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LETTER TO THE EDITOR 

Theoretical study of vortex lines in a spatially 
modulated Josephson junction 

Peter Stampfli 
Institut fur theoretische Physik, FB Physik WE5, Freie Universitat Berlin, Arnimallee 14, 
1 Berlin 33, Federal Republic of Germany 

Received 17 March 1989 

Abstract. The energy and oscillation frequency of a single vortex line or soliton in a long 
Josephson junction with a spatially modulated Josephson penetration depth are calculated 
systematically. The resulting critical magnetic field H,,, and the stability and pinning of the 
different soliton solutions are discussed. The pinning forces are strongest if the period length 
of the modulation is about three times larger than the average penetration depth (or 
coherence length) of the junction, although the absolute barrier height against free vortex 
movement still increases. 

The magnetic properties of type 11 superconductors and Josephson junctions (see e.g. 
Saint-James et a1 1969 for a review) are strongly determined by the presence of vortex 
lines containing one unit of the magnetic flux quantum. The pinning of these vortex 
lines in spatially inhomogeneous superconductors has an important influence on their 
magnetic properties, such as for example a magnetic hysteresis due to ‘frozen-in’ mag- 
netic flux. The dissipation of energy due to the movement of vortex lines at high currents 
is reduced if the vortex lines are pinned at defects. The new high-T, superconductors 
consist essentially of two-dimensional superconducting layers at a distance apart which 
is of the order of the superconducting coherence length (perpendicular to the planes). 
Thus, they have an intrinsically modulated structure that might have an important 
influence on the properties of vortex lines, especially their mobility. In principle, spatially 
inhomogeneous superconducting structures could be used to store information. The 
presence or absence of a vortex line at a well defined site would correspond to one bit of 
information. 

But, in spite of all this interest, it is only possible in special cases to treat the pinning 
of vortex lines and vortex-line lattices in a quantitatively accurate way (Saint-James et 
al 1969, Stampfli and Rice 1986). Usually one has to use an approximate and often 
incomplete analytical or numerical treatment. One instance, where rather exact numeri- 
cal work is possible, is the case of spatially modulated Josephson junctions, due to their 
essentially one-dimensional nature. KuliC (1987) has previously proposed to study this 
problem, but he has only given few results. In this Letter we intend to study the pinning 
of vortex lines or solitons in periodically modulated Josephson junctions in more detail. 
The free energies of solitons and the corresponding critical magnetic fields for flux 
penetration are given, together with the absolute barrier against free-soliton movement 
and pinning-force constants. 
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To set up our model of the modulated junction we assume that the critical current 
density J1 of the Josephson junction is constant in space and that the Josephson pen- 
etration depth A, (or coherence length) is spatially modulated. This could be achieved 
with an inhomogeneous doping of the superconducting layers of the junction with non- 
magnetic scatterers (KuliC 1987, Saint-James et al 1969), resulting in spatially varying 
electronic mean free paths. The junction is assumed to be long in the x direction and 
narrow in they direction. It is oriented parallel to thexy plane and modulated depending 
on the x coordinate. Magnetic fields are applied parallel to they direction. We neglect 
boundary effects due to the finite length of the junction in the x direction. The free 
energy density per unit area is then (Barone and Paterno 1982) 

f ( x )  = ( h J 1 / 2 e ) [ ( l  - cos q ( x ) )  + b I ? ( x ) ( d q ( ~ ) / d x ) ~ ]  (1) 

where q ( x )  is the difference in the phase of the superconducting order parameter in the 
superconductors at both sides of the junction. The free energy (for a unit sample 
thickness in y direction) is F = Jfdx.  The modulated Josephson penetration depth is 
A:(x )  = h c 2 / 8 n e J l d ( x )  where c = ~ / 4 n t  is the capacity per unit area of the dielectric 
layer of thickness t and dielectric constant E .  For non-magnetic scattering d ( x )  = 
Al(x) + A2(x) + t = d,g(x), where il l(x) and A2(x)  are the spatially modulated mean free 
paths of the superconducting layers on both sides of the junction. Then we can put 
A:(x )  = A&’g(x) and Ai = f i c2 /8nJ ldo ,  where J1 is the critical current density of the 
junction. For simplicity we assume a sinusoidal modulation g(x) = 1 + a cos(2m/A), 
where a is the amplitude of modulation. Other steeper or asymmetric profiles could be 
more effective for pinning vortex lines, but the conclusions of our work should also apply 
in these cases, at least qualitatively. 

It is convenient to introduce dimensionless units in order to eliminate all irrelevant 
parameters. The transformation into the original units is defined by 

x = A,u (2a)  

F = (hJ1Ao/2e)F (2b )  

for positions and 

for the free energy. Note that F = J fdu  and thus the free energy density is in the new 
units 

?(U) = 1 - COS q + & - ‘ ( U )  (dq/du)2 

with 

g(u) = 1 + a cos(2nu/L) (3b) 
and L = A/Ao. The relevant parameters, which define the modulated Josephson junc- 
tion, are thus the amplitude a of the modulation and the ratio L of the length A of the 
period of the modulation g(u) to the Josephson penetration depth A, of the uniform 
barrier (a = 0). 

We want to study a single soliton cp, in such a modulated Josephson junction, and to 
consider its free energy. From the variation of Fwith respect to cp (or using Lagrange- 
Euler equations, Barone and Paterno 1982) we obtain a modulated Sine-Gordon 
equation for cp 

(d/du)[(l/g(u))(dcp/du>l = sin q. (4) 

The appropriate boundary conditions are q7 , (+m)  = 2 n  and qs( -%) = 0. Such a vortex 
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line becomes energetically stable for sufficiently large external magnetic fields H o  > HC1 
and the penetration of vortex lines into the junction becomes possible (Kulik 1967). The 
critical field H,, is obtained from 

Hc1 = ( 4 n / @ d ~ ,  = ( 4 n / @ d h J 1 ~ o / 2 e > F s  ( 5 )  

where Q0 = hc/2e is the magnetic flux quantum and Fs is the free energy of the soliton 
9,. Because of the spatially varying g(u) ,  there are two different single soliton solutions 
of (4) with different free energies, depending whether the maximum of (dq/du)2 lies 
around the maximum or minimum of g(u). Note that our particular choice of g(u) is 
symmetric with respect to a change of the sign of a (together with a translation by L/2) 
and that g(-u) = g(u). Thus we obtain both soliton solutions with the same boundary 
conditions qs(0)  = n and qs( -=) = 0, simply by changing the sign of a. The maximum 
of (dq/du)2  lies at u = 0 and the soliton of low (or high) free energy is obtained using a 
positive (or negative) a. 

It is interesting to consider the limiting cases for L ,  because we can obtain analytical 
results. In the limit L -. CC it is g(u) - 1 + a = constant in the region where dq,/du # 0 
and the solution of ( 4 )  is therefore (Kulik 1967) 

and the free energy of the soliton is 

F, = 8/( 1 + a) ’ I 2 .  (6) 

Note that for small a we have F, - 8( 1 - a / 2 ) ,  which is essentially equivalent to the result 
given by KuliC (1987) in his equation (5 ) .  In the limit L -+ 0 we obtain from the soliton 
q o ( u )  = 4 tan-’ exp(u), of the homogeneous junction (a = 0), an approximate solution 
of ( 4 )  

It is easy to verify that (4) is thus fulfilled up to terms of order lLal and that the free 
energy is 

F,(a, L )  - 8 = constant x ( L U ) ~  for L-. 0. (8) 

Thus we obtain that the free energy of the solitons become the same as in the homo- 
geneous junction (a = 0), F,-. 8, for L --+ 0. 

In general, ( 4 )  can only be solved numerically because ‘inverse scattering methods’ 
cannot be used since the continuous-translation symmetry is broken by g(u). Note that 
the asymptotic behaviour given by equations (6)-(8) differs widely for L --j 0 and L -+ =; 
thus there is probably no simple analytic approximation for q, and F, for finite L and a.  
From the symmetry of g(u) follows that q,(u) = 2n - q s ( - u )  andf(u) = f ( -u )  if the 
boundary conditions qs(-.c) = 0 and q , ( O )  = n are applied. To make certain that 
no soliton-antisoliton pairs appear in the numerical solution we have to check that 
dq,/du > 0 for all U .  The boundary condition qs(-a) = 0 cannot be used directly in a 
numerical calculation and requires a special treatment. Note that if q is small enough 
(e.g. for u -+ - x.), we can put sin q = q in ( 4 )  and obtain the linear differential equation 
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From Bloch’s theorem (Ashcroft and Mermin 1976) we obtain that the elementary 
solutions of this differential equation are of the form 

q + ( u )  = u. (u)exp(+~u)  (9) 

where v,(u) are periodic functions with period length L and K is an appropriate constant. 
Then, q +  is easy to find using numerical integration and transfer matrix methods. Note 
that q+(-x) = 0 and rps rp+ for U+ - C O ,  Thus, at a sufficiently large negative uo, 
we obtain a new boundary condition (d/du)rp,(uo) = qs(uo)  (d/du) In q+(uo) ,  which is 
equivalent to qs(-  CO) = 0. We have now to search for an initial value qs(uo) which, 
togetherwith theabovecondition for (d/du)rps(uo), resultsin qs(0)  = nfromanumerical 
integration of (4). This ‘shooting method’ is treated in detail by Dahlquist and Bjorg 
(1974). Thus q s  is calculated numerically and the free energy Fs is obtained from 
numerically integrating (3). 

To examine the stability of the soliton q s  we have to consider small time-dependent 
perturbationsandthusrp(u, z) = q,(u) + ?)(U, t), where lql < 1 isasmallperturbation. 
It is convenient to introduce dimensionless units for time t = ( 2 e J , / ~ h ) - ~ ’ ~ t  and for 
frequency w = (2eJl/cfi)1/2h, where c is the capacity per unit area of the junction. 
The partial differential equation, which determines the dynamical behaviour of the 
Josephson junction is in these units (Kulik 1967, Fetter and Stephen 1968) 

(a /au) [ ( l /g(u) ) (drp/ /du) ]  - a 2 q / a f 2  = sin q (10) 

where the dissipative term d2rp/8f2,  due to finite voltages across the junction, has been 
added to (5). Assuming a small perturbation of the form q ( u ,  5 )  = q ( u )  exp(-ih?), 
where w is the vibration frequency of the soliton, we linearise around qs and obtain from 
(10) 

This is a linear eigenvalue problem for u2 with the boundary conditions q( * CO) = 
0. From the symmetries of g(u) and qs(u)  it follows that q ( u )  = q ( - u )  and thus 
(d/du)q(O) = 0. 

For the homogeneous junction (a  = 0) it is simply q = (d/du)qs and w2 = 0; such a 
perturbation corresponds to a translation of q,. Similarly, we obtain that w2+ 0 for 
L + CC (because g(u) = constant where q # 0) and for L + 0 (because Fs + 8 for all 
solitons). For finite L we have to calculate u2 # 0 numerically and as for q, the boundary 
condition q(- m) = 0 requires a special treatment. For sufficiently large negative u we 
can put cos(rp,) = 1 and (11) becomes 

As before, the elementary solutions of this differential equation are of the form given 
by (9). Note that in this case q? and K depend on w2. Given a trial value for w2, we 
use q(uo)  = 1 and (d/du)q(u,) = (d/du) In q+(uo)  as starting values for a numerical 
extrapolation of ( l l ) ,  as discussed for rps. The correct value is found if the boundary 
condition (d/du)q(O) = 0 is fulfilled. 
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Figure 1. Free energy F, (per  unit sample thickness) of a single vortex line in a spatially 
modulated Josephson junction. The Josephson penetration depth is A : ( x )  = A.i /g(x) ,  where 
g(x) = 1 + a cos(2izx/A). Curves for different values of a,  indicated in the figure, are given. 
Fo = 4UJ,Ao/e is the free energy of the vortex line in the uniform junction l . , (x) = I ,",  where 
.TI is the critical current density of the junction. Values for the vortex line of low energy are 
given here. 

0.4 

N O  

3 . 
N3 0.2 

0 5 10 15 
A / A o  

Figure2. Oscillation frequency w of the vortex line of low energy in the modulated Josephson 
junction (see caption of figure 1). Here U ;  = 2eJ,/ch, where c is the capacity per unit area 
of the junction. Note that U' > 0 is proportional to a phenomenological pinning force 
constant. 

Results for the free energy F, and frequency of oscillation w of a single vortex line or 
soliton in the modulated Josephson junction (1) are presented in figures 1 to 4. The two 
different solutions of low or high energy are located around the minimum or maximum 
of the modulated Josephson penetration depth AJ(x), respectively. Curves for different 
constant values for the amplitude a of modulation are given as functions of the period 
of modulation L = A/ilo. 

Our numerical results have the correct limiting behaviour given by (6) for A + x and 
by (8) for A .+ 0. Note that w2 + 0 in both limiting cases. The width of a vortex line is 
of the order of about 2A0, thus if A d 2Ao there is practically no difference in the free 
energy between the two vortex-line solutions and w = 0. For larger and increasing A, 
the difference between the free energies increases monotonically and ( 5 )  defines two 
critical magnetic fields Hcla < Hclb, where Hcla and Hclb are given by F, in figure 1 and 
figure 2. For an external field H o  > Hela, vortex lines can penetrate into the junction, 
but presumably they are confined to the regions where A&) is small. Because of the 
pinning of vortex lines it is possible to have frozen-in magnetic flux lines even at smaller 
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Figure 3.  As figure 1, but the free energy F, for the vortex line of high energy is given. The 
difference in Fs, compared to figure 1, gives the absolute height of the barrier against free 
vortex movement. 
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Figure 4. As figure 2, but the formal oscillation frequency w is given for the vortex line of 
high energy. Note that here w 2  < 0, thus w is imaginary and these vortex lines are unstable 
and rapidly begin to move along the junction. 

external magnetic fields. Only for Ho > Hclb it is possible to have a vortex line at the 
maximum of A,(x). But note that o2 < 0 for these vortex lines (figure 2) and thus they 
are unstable, since any small perturbation will first grow exponentially in time, resulting 
in a rapid movement of the vortex line along the junction. This is in contrast to the vortex 
lines of lower energy (figure l), which have a real oscillation frequency and are stable 
against fluctuations. 

In a simple analogy, we can think of the vortex line as a classical massive particle. If 
its mass is taken to be constant, then the pinning force which keeps the vortex line at its 
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rest position has a force constant which is proportional to U*.  Note that w 2  and thus the 
pinning forces have their maxima around A = 3Ao and that dF,(A)/dA has its maximum 
in the same region of A. 

The free energy and oscillation frequency of vortex lines in a spatially modulated 
Josephson junction have been calculated systematically. For a finite range of the mag- 
netic field H there could exist well defined vortex line lattices in the junction, which are 
stable against fluctuations and which could be manipulated by applying voltages across 
the junction and be used, for example, to store information. The strongest pinning forces 
have been found for a period of the modulation which is about three to four times the 
Josephson penetration depth (or coherence length). The pinning of vortex lines vanishes 
rapidly for smaller period lengths. Our results could also be applied qualitatively to other 
superconducting structures. In the high-TC superconductors the spacing between the 
superconducting planes is probably too small to give efficient pinning of vortex lines and 
larger effects would be expected from the interaction of twinning planes with the 
superconductivity. 
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